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ABSTRACT

As the demand for feature-rich mobile systems such as smart-
phones and tablets has outpaced other computing systems
and is expected to continue at a faster rate, it is projected
that SoCs with tens of cores and hundreds of IPs (or ac-
celerator) will be designed to provide unprecedented level
of features and functionality in future. Design of such mo-
bile systems with required QoS and power budgets along
with other design constraints will be a daunting task for
computer architects since any ad hoc, piece-meal solution is
unlikely to result in an optimal design. This requires early
exploration of the complete design space to understand the
system-level design trade-offs. To the best of our knowledge,
there is no such publicly available tool to conduct a holistic
evaluation of mobile platforms consisting of cores, IPs and
system software.

This paper presents GemDroid, a comprehensive simula-
tion infrastructure to address these concerns. GemDroid has
been designed by integrating the Android open-source em-
ulator for facilitating execution of mobile applications, the
GEM5 core simulator for analyzing the CPU and memory
centric designs, and models for several IPs to collectively
study their impact on system-level performance and power.
Analyzing a spectrum of applications with GemDroid, we
observed that the memory subsystem is a vital cog in the
mobile platform because, it needs to handle both core and
IP traffic, which have very different characteristics. Con-
sequently, we present a heterogeneous memory controller
(HMC) design, where we divide the memory physically into
two address regions, where the first region with one memory
controller (MC) handles core-specific application data and
the second region with another MC handles all IP related
data. The proposed modifications to the memory controller
design results in an average 25% reduction in execution time
for CPU bound applications, up to 11% reduction in frame
drops, and on average 17% reduction in CPU busy time for
on-screen (IP bound) applications.
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1. INTRODUCTION
There is an exploding demand for mobile systems, which

include smartphones, tablets, and wearable devices. Gart-
ner research projects that 2 billion of these units will be
sold in 2013 [15] and there will be over 10 billion mobile
devices by the end of 2017 [8]. Moreover, it is projected
that global mobile data will increase 13-fold between 2012
and 2017 reaching 11 Exabytes per month and two-thirds of
this data is projected to be video data [8]. These numbers
clearly indicate the importance of designing feature-rich mo-
bile devices to cope up with the market demand. The ITRS
roadmap for designing System-on-Chip architectures (SoCs)
over the next decade projects that a mobile device could
have up to 50 processing cores with about 300 TFLOPS
computing capability and more than 400 IP blocks for en-
abling such feature-rich mobile platforms [14]. Thus, major
companies like AMD, ARM, Apple, Intel, NVidia, Qual-
comm, and Samsung have already ventured into this grow-
ing market targeting devices ranging from wearable wrist
watches, glasses, to hand-held smartphones, phablets and
tablets. Design and analysis of these devices with required
QoS provisioning, power budgets and evolving technology
artifacts is a daunting task that computer architects have to
deal with in the coming years.

Mobile systems are based on the SoC design philosophy,
having the core(s) (CPUs) and multiple accelerators on die
or as part of the complete platform. These accelerators, or
IPs 1 as they are commonly called, are customized to im-
plement specific functionalities very efficiently, and hence

The authors would like to confirm that this work is an
academic exploration and does not reflect any effort within
Intel.
1We use the term accelerator or IP interchangeably through-
out this paper.
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Figure 1: A sample SoC Platform with a high-level view of dif-
ferent functional blocks.

off-load the work from the core. As the IPs are task spe-
cific hardware components, they provide high performance
delivering superior performance-per-watt compared to run-
ning the same task on cores. The set of IPs employed by a
typical mobile platform includes the graphics, video encoder,
video decoder, imaging, modem, communications (e.g., Wi-
Fi, bluetooth) and others as shown in Figure 1.

Given the growing need for these mobile devices that have
become an essential part of our daily life, it is essential that
we understand the underlying platform issues better to de-
velop more efficient designs from the performance and power
standpoints. Also, the growing number of use-cases which
get integrated into these devices and the associated software
complexity can often lead to conflicting performance and
power requirements all of which need to be analyzed care-
fully for optimal design decisions. The important research
questions relevant to emerging mobile platforms include: (i)
topology exploration that determines the ideal number and
types of cores, and types of IPs to best match the demands of
the target workloads; (ii) design of scalable on-chip networks
to cater to the divergent needs of IPs and cores; (iii) design
of memory schedulers and scheduling algorithms that can
handle both IP and core requests; and (iv) workload map-
ping and scheduling algorithms to maximize performance
and minimize energy consumption. Clearly, answering these
types of questions requires access to a simulation framework,
capable of capturing such issues and enabling exploration of
design alternatives/tradeoffs at the complete platform level.

While there are existing individual IP [9,42] and core sim-
ulators [5], to the best of our knowledge, there is no open
source integrated simulation platform to conduct holistic
studies of a complete mobile platform that can (i) capture
activities across multiple IPs and cores, (ii) run an operat-
ing system (like Android [16]), (iii) execute real-world ap-
plications to capture and analyze realistic events, (iv) simu-
late architectural features such as core, caches, network and
memory, in detail to understand the application-architecture
interactions, and (v) provide various application level and
IP-specific metrics in addition to global (chip-wide) perfor-
mance metrics.

In this work, we intend to fill this critical void by making
the following contributions:
• We propose a comprehensive simulation infrastructure,
called GemDroid, which incorporates the GEM5 architec-
ture simulator [5], Attila graphics simulator [9] and internal

models for the other IPs, and, is capable of running the An-
droid mobile OS [16] for facilitating mobile platform design
and optimization research. GemDroid is comprised of two
primary layers. The first layer provides emulation of An-
droid OS by the Google Android Emulator [17] and allows
us to capture system-level interaction between multiple IPs
and I/O devices, including OS activities. What the emu-
lator cannot provide is the timing information of different
IP activities and therefore, as our second layer, we inte-
grate/build the timing piece using existing simulation plat-
forms or model them analytically as needed for different IPs.
The framework is flexible for integrating models of varying
complexities for the cores and IPs.
•Using several smartphone/tablet applications such as games,
video-playback, video-recording, as well as core-centric work-
loads that run on Android, we demonstrate that it is possible
to simultaneously capture the activities of the cores and IPs
for conducting a multitude of design and optimization stud-
ies, and focus on analyzing the memory system performance
in this work.
• We demonstrate through extensive workload analysis, that
the shared memory subsystem is a critical bottleneck be-
cause of the combined memory requests from the core and
IPs with different characteristics. For example, memory ac-
cess patterns of IPs exhibit high levels of regularity (e.g., se-
quential data accesses by frame-buffers), as opposed to the
memory access patterns of, say, well-known SPEC bench-
marks [21]. Similarly, the memory bandwidth demanded by
cores and IP when running a video on YouTube are very
different from each other as depicted in Figure 2. Specif-
ically, while the core’s bandwidth demand is more or less
constant (requiring < 0.2GBPS for the studied workloads),
display IP’s needs are very bursty in nature (needing around
0.8GBPS), and the total bandwidth demand for a video
recorder can be much higher than that of the memory sys-
tem. Moreover, these requests not only differ in terms on
bandwidth demands, but also their latency demands are also
very different from each other. While IPs have strict latency
deadlines that need to be met, cores do not have deadlines.
On the other hand, IPs have time window before which they
can be served without affecting the user-experience, but,
each cores memory request directly affects the performance
of the system.
• Based on the insights obtained from the characterization of
memory requests, we propose a novel heterogeneous mem-
ory controller (HMC) design for SoCs, where one MC is
dedicated for latency critical core requests and the second
MC is optimized to enhance the bank-level parallelism of
the memory requests it serves. The two memory controllers
are still responsible for two distinct (non-intersecting) ad-
dress ranges. Our evaluation of this new MC design results
in better performance and user experience; specifically, it
results in average 25% reduction in execution time for CPU
bound applications, up to 11% reduction in frame drops, and
on average 17% reduction in CPU busy time for on-screen
applications.

2. SYSTEM OVERVIEW
Mobile platforms are system-on-chip (SoC) devices with

at least one processor core and specialized accelerators/IPs
to which computations get offloaded by the operating sys-
tem for performance and/or power efficiency. Based on the
application characteristics, the work gets split between the
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Figure 2: Memory bandwidth demand of cores and IPs when
YouTube is played.

core and multiple IPs. Data transfers between the cores and
the IPs take place through the main memory. Figure 3 pro-
vides an overview of video playback on YouTube highlighting
the tasks that are run on the core and those that are run
on individual IPs (audio and video HW). The interactions
between core, IPs and OS are described next.

2.1 OS-IP Interaction
The phone and tablet operating systems such as Android

and iOS include different software drivers to interact with
the respective IPs. The device maker optimizes these drivers
according to their requirements. Note that a driver acts as
the link between the different applications running on the
OS and the underlying hardware. Besides the functionality,
the drivers also control the power states of the IPs. Android
also includes an additional framework layer, which provides
an interface for applications to interact with the drivers and
the underlying libraries which control the IPs. Further dis-
cussion of Android OS can be found elsewhere [16], but it is
important to note that the software complexity and features
have greatly increased with the newer devices and contribute
to an important portion of the overall power, performance
and user experience with the device. Together, these play an
important role in determining the battery life of the device,
which is critical in the mobile ecosystem.

2.2 Core-IP Interactions
One of the main difficulties in analyzing SoCs is that the

individual IPs are owned by third party vendors. These
are licensed by the phone and tablet makers to build their
products. The intricate details of the architecture and the
working details of the IPs are not released to the public
to maintain the competitive edge. In this part, we briefly
explain how an IP works without getting into intricacies
about each IP specifically.

Each IP gets a region of memory allocated for it, where
its input and output data get stored. The software (OS and
IP-driver) stores the data that is supposed to be sent to an
IP at the region allocated, and the corresponding address is
set in IP registers. The IP independently accesses the data
through DMA (direct memory access).

It is important to emphasize that IPs do not directly com-
municate with the cores. They work based on scheduling
triggered from their driver. Different modes of interaction
exist – some of the IPs like the display panel operate at a
constant rate, where they read their frame buffer at 60 FPS
irrespective of when the updates to the frames happen by
a core, while others, such as the graphics and imaging IPs,
are asynchronously triggered when required.

To get better clarity about the interaction and the con-
sequent impact on overall performance, let us consider Fig-
ure 3 that involves video streaming to display.

Happens 

in core

Video file (from IO driver)

SW Demux

Video Frame Split

Video Driver Audio Driver

Video HW Audio HW

AV Sync

Display Panel

Audio Frame Split

Video 

Decode
Audio 

Decode

Figure 3: Simplified work-flow diagram of video streaming use
case highlighting the core-IPs interaction.

2.2.1 Core-Video/Audio Interaction

Incoming video file gets demultiplexed by the core and the
individual frames are marked. The video and audio drivers
then direct their respective IPs to pick the frames and de-
code them at a specific rate. These IPs wait for the core to
complete the first step of splitting the audio and video data
before starting their specific activities. The performance of
the core determines the overall processing rate since it han-
dles these critical portions of the overall use-case.

2.2.2 Video Decoder-Display Interaction

The display panel operates independently of the other IPs
since it refreshes the screen continuously. There are three
possible scenarios of relative speeds. In the first scenario,
where both video decoder (after completing the AV sync)
and display work at the same rate, a two-entry frame buffer
(FB0 and FB1) is sufficient. When display reads from FB0,
video decoder can write to FB1. In the next time frame,
display reads from FB1 and video decoder writes to FB0,
and this process repeats in a cyclic fashion. In the second
scenario, where the video decoder (producing 60 frames per
second (FPS)) is working much faster than the display panel
(30 FPS), the frame buffer needs to have a larger number
of entries to be consumed by the slower display panel. Note
that, in the steady state, n/2 frames from the video decoder
are read by the display and the other n/2 frames are dropped
(50% frame drops). Finally, in the third scenario, where the
video decoder is working at a slower pace than the display IP,
the system performance is bottlenecked by the video decoder
performance. In this case, while computed frames need not
be dropped, many frames are skipped from being computed
to maintain the sync between audio/video with real-time.
Further, the display panel does unnecessary refreshes as the
frames are not updated, which is clearly non-optimal from
an overall platform power perspective. While the first sce-
nario is the most preferable one, the third scenario is often
encountered in most SoC devices.

2.3 Application Requirements
Table 1 lists a set of our target applications and specifies

the IPs they employ at some point during their executions.
Note that an application can access multiple IPs at different
portions of its execution, or send requests to different IPs at
the same time. As user requirements increase, the applica-
tion complexity correspondingly is scaled to cater to their
needs for different platforms to provide competing solutions.
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Table 1: Shows 9 IPs and two classes of applications (CPU-bound and On-screen applications) evaluated using GemDroid. The table
shows IP usage across applications. High/Low indicates a particular IP’s dominance in IP utilization compared to others.

OnScreen-bound CPU-bound

IPs
Apps

Game 1 Ar-Game 2 Browser
Video
Rec.

Soundplay Youtube
Video
Player

Gallery
Antutu-
RAM

RG
Bandwidth

Linpack RLBench CFBench
Caffein
Mark

And-
EBench

Antutu-
Core

Antutu-
GFX

Core/MEM Low Low High Low Low High Low Low High High High High High High High High Low

Display-Out High High - High - High High Low - - - - - - - - -

Touch-In Low Low - - - - - Low - - - - - - - - -

NW-Out - - Low - - Low - - Low - Low - - - - Low Low

NW-In - - Low - - High - - Low - Low - - - - Low Low

Cam-In - High - High - - - - - - - - - - - - -

Aud-Out Low Low - - High - - - - - - - - - - - -

GPU High High - - - - - - - - - - - - - - High

Vid/Img-Dec - - - - - High High High - - - - - - - - -

Aud-Dec Low Low - - High - - - - - - - - - - - -

An example is, emerging applications in the augmented re-
ality space [31], where the devices and applications attempt
to enhance the surroundings with additional details to help
the user with their specific needs. These applications place
heavy requirements on core, graphics, network, memory and
other IPs on the platform. Further, slowdown in any por-
tion of the platform or any specific IP will affect the overall
experience. Hence, it is critical to analyze the entire SoC
platform as a whole when optimizing features, which in turn,
makes a case for a complete simulation infrastructure that
can enable this.

3. A COMPREHENSIVE EVALUATION

PLATFORM
Given the diversity in the types of phones and tablets that

get built and used, the goal of the proposed framework is to
provide flexibility for evaluating these designs with multiple
cores and IPs. The framework is agnostic to the details in
the IP model, which can be a simple analytical model or a
complex cycle-accurate model of the IP’s micro-architecture.

3.1 GemDroid - Simulation Infrastructure
Currently very limited infrastructure exists for enabling

platform level studies across multiple IPs running realistic
and/or relevant workloads. GEM5 framework is the closest,
that the authors are aware of, which can simulate an ARM
or x86 cycle-accurate core with Android/Linux Kernel run-
ning on top of it [5, 19]. Currently, GEM5 can simulate
only a limited set of IPs (core and only display panel). This
limited support and drastic simulation slow down severely
restricts the number of apps that can be run. Further, it is
not possible to do IP-centric evaluations. While incorporat-
ing GEM5 in its infrastructure, GemDroid expands on the
number of IPs modeled to get close to a complete device (see
Figure 4). Further, GemDroid makes it flexible in terms of
the modeling technique adopted for the IPs for which cycle-
accurate models are hard to build mainly due to unavailable
public information (see Figure 4).

GemDroid relies heavily on the Google Android’s open-
source emulator and it has been enhanced for our needs. An-
droid emulator meets two of our essential goals – booting an
operating system and running commonly used applications
on top. The emulator runs the latest version of Android
compiled for ARMv7 ISA with Neon instructions. The core
of the emulator, based on the Qemu tool [17], translates each
ARM instruction to a set of native machine instructions and
executes them on the host. During this translation, instruc-
tion level traces are captured. The framework also emulates
other IPs such as the imaging (handles the images captured
using the camera), display, network, audio and there are

hooks available to emulate sensors such as accelerometer,
gyrometer, etc.

However, the emulator misses out on the crucial part needed
for performance studies: it does not incorporate the simu-
lation time for any of the IPs. The emulator’s goal is to
enable application development for Android and hence has
a different set of goals than ours. GemDroid integrates ex-
isting performance models - GEM5 for the core and memory
subsystem, Attila for graphics [9] - and analytical models for
the other IPs missing a model (like Video, Network and oth-
ers). We do not claim to have developed performance/power
models for all IPs, but our proposed framework is extensible,
and will allow for other users in the community to incorpo-
rate their models as needed. We are looking to make our
framework open for others in the community to contribute
and do their studies on this platform.

3.2 Trace-based simulation
Unlike server workloads or widely available benchmarks

like SPEC, PARSEC [4], etc., mobile applications are more
user interactive. Providing user inputs and studying the sys-
tem is not an easy task due to the associated non-determinism;
for that, one possible method is to capture user inputs that
are sent to the OS, replay it exactly while evaluating the sys-
tem [33,40]. In our infrastructure, we use Android emulator
as the front end, where one can install almost all applications
available on Google Play and provide inputs like the way it
is done on SoCs. The emulator has been instrumented to
capture the ARM instructions and IP calls along with their
interactions with the memory in a trace file. Using such a
trace, provides determinism in evaluating such applications
with user inputs.

3.3 Model characteristics
While a cycle-accurate full system simulation meets the

accuracy goals for micro-architectural and system level stud-
ies, they cannot simulate considerable durations of our tar-
get mobile workloads due to complexity associated with han-
dling multiple IPs. On the other hand, while development
boards can meet the speed requirements they fail to provide
control for exploring the system by changing the underlying
parameters. As described in [5], GEM5 can cycle-accurately
simulate 200K instructions per second, potentially leading
to 800X slowdown for a processor-core based system. If
the simulator is augmented with accurate models of GPU,
audio/video encoder/decoder, and imaging IPs, the simula-
tion times would become unreasonable. Hence GemDroid
looks to keep the infrastructure flexible for integrating mod-
els with differing levels of complexity and allowing them to
interact. Depending on the IP of interest, users can inte-
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Figure 5: Execution where display IP reads a frame from memory
at the same time core is writing a new frame.

grate accurate models for specific IPs and integrate less ac-
curate models for the rest of the system. The less accuracy
is with respective to not modeling the micro-architecture
details of IPs, but having enough information to capture
timing associated with different activities. In our work, for
studying system-level memory characteristics across IPs, we
developed an alternate simplified core model in our infras-
tructure which assumes a 1-IPC model. This does not affect
the timing accuracy of the execution significantly as many
frequently used ARM ISA instructions are single-cycle in-
structions [2]. Such a system had only a 180X slowdown
compared to real hardware. Users though have the flexibil-
ity to switch between the highly accurate GEM5 core model
or our simplified core model based on their requirements.
Note that when the system is extended with cycle-accurate
core model, significant slowdowns were observed resulting
in only a short duration of execution time being simulated.
Such a simulation is unsuitable for IP based system studies
as not many IP calls are seen in such short duration.

For the graphics IP, we used the Attila graphics simula-
tor [9], which handles the openGL calls issued by applica-
tions. These OpenGL calls that are used for rendering differ-
ent images to the screen, are captured in the trace. For video
IP, we used the open-source H264 RTL model [42] to capture
the timing associated with decoding. For audio, and imag-
ing (applications that use camera for capturing pictures or
recording video), we use the emulator to capture the calls to
audio and imaging IP. These calls provide us with the sizes of
the frames, and the arrival rate of the frame requests (based
on the number of instructions between frames). Reasonable
amount of application time was simulated by capturing the
system level metrics with at least 2 billion core instructions.

3.4 Capabilities of GemDroid
Our infrastructure can be used to conduct multiple types

of studies starting from the core, memory and individual
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Figure 6: Effects of varying memory latency on performance for
(a)cores, (b) GPUs, and (c) other IPs.

IPs to system-level performance/power analyses. The first
insight we can get from using GemDroid is the usage pattern
of IPs for different applications. Currently, we have incor-
porated 9 IP models in GemDroid and have analyzed the
behavior of a wide spectrum of applications such as games,
video recording and video playback. Table 1 already shows
the application-specific usage of IPs.

In addition to understand IP usage, the platform can help
in studying contention for shared resources. Consider the
example shown in Figure 5. The figure illustrates a sce-
nario when YouTube video playback traces were simulated
on the system and different IP’s memory accesses were ana-
lyzed. We note that there are instants when two IPs perform
memory access at the same time. Further, multi-core stud-
ies are also possible once we collect application-level traces
for multiple applications. We leave this as a future work.
Instead, in this paper, we analyze the memory system of
current SoCs to quantify its impact on application perfor-
mance, and explain how a heterogeneous memory controller
design can help mitigate some of the problems the memory
system brings.

4. EVALUATION METRICS
Performance evaluation of SoCs is more challenging than

the conventional CPU-centric platforms because of the emer-
gence of new IPs and use-cases with their different charac-
teristics and requirements. In particular, having one global
performance metric does not provide a right picture on how
the platform is behaving or to identify the bottlenecks in the
system. In this section, we classify target applications into
following classes, and define appropriate metrics for each
application class.

CPU/GPU-bound Applications – IPC/CPI: CPUs
are the traditional processing cores, where each load or store
instruction that goes to memory critically stalls the core,
because out-of-order processing capability is very limited in
these cores due to power constraints. Figure 6a depicts how
the performance of such a core degrades as the load/store
delays increase. Typically these cores do not operate under
any deadlines. For our core-bound benchmarks like Linpack
and Antutu-CPU, since job execution time is a standard per-
formance metric, we can use IPC (Instructions Per Cycle) or
CPI (Cycles per Instruction) for gauging their performance.

GPU workloads (that are not display refresh limited) also
involve throughput-oriented computation; but, they slightly
differ from CPU cores. Specifically, they have some inherent
latency tolerance because of the high thread level parallelism
(TLP) [24]. GPUs can hide memory access latency up to a
point (marked with dotted lines in Figure 6b), beyond which
their performance starts to drop, following the pattern of
the CPU cores. Typically, GPUs do not have any deadline
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when they are used for compute purposes. However, while
they are used for graphics/rendering purposes, they act like
the other IPs with well-defined QoS targets. Thus, both
IPC/CPI can serve the purpose for evaluating GPUs.

Onscreen Applications – Frame Drops: For on-
screen applications which have a visual aspect to them, such
as video/audio playback or graphics oriented applications,
job turnaround time may not be an effective metric. For
example, when a game is being played, the smoothness of
the transitions and game playback are commonly defined
performance metrics. These applications are limited by the
rate at which the display panel refreshes the screen (at say
60 FPS). Even if the components compute faster, it does
not change the user perception but will have an impact on
overall power. Similarly, when playing a video or audio file,
execution time is dependent only on the clip’s duration, and
execution should be controlled such that execution time is
equal to the clip’s duration. For example, a 1-minute video
has to be played for exactly 1-minute. Any deviation from
this may result in distortion in quality or lags become visible.
In these situations, one of the ways of quantifying perfor-
mance is to check whether the system is capable of playing
X frames per second (FPS) consistently, if the video file had
been encoded in X -FPS (24 FPS is the most commonly en-
coded video frame rate, though 30 and 60 FPS videos and
games are also becoming increasingly popular).

12FPS 36 FPS

24 FPS

AVG=24 FPS

AVG=24 FPS

Figure 7: Two different scenarios with different FPS rates over
time.

Consider the scenario shown in Figure 7, where in case (1)
the system manages to play a 1-minute video file at two dif-
ferent FPS rates, 12 FPS for the first half (30 seconds), and
36 FPS for the second half. The average FPS for the video
file being played would be 24 frames per second. In case
(2) on the other hand, the system manages to play the file
at a constant 24 FPS. Although both the videos are played
at 24 FPS on the average, certainly the user would not be
satisfied with a choppy frame rate experience delivered by
the first scenario. From this, it is clear that FPS may not be
the right metric. That is, the average FPS value does not
capture the overall behavior of the system.

Instead of FPS, if frame drops per second (FDPS) is used
as a metric, one can distinguish between the two cases de-
picted in Figure 7. More specifically, if the required frame
rate is 24 FPS, case (i) would leave us 6 FDPS, whereas case
(ii) would have 0 FDPS. This clearly shows that case (ii) is
preferable over case (i).

Real-time Applications – Response Time: Several
IPs in the SoC are responsible for meeting the immediate
deadlines like touch, accelerometer (and other sensors) and
interrupt-handling to user pressing different buttons. These
are different from the CPU and GPU cores as they are
response time oriented in order to meet certain deadlines.
Their performance is captured by monitoring if they meet
their strict deadlines or not. For an input request, their
performance is determined through a yes or no question: if

the IP met the deadline set for the request. Figure 6c shows
this. The width of the bar shown corresponds to the avail-
able latency before which the deadline expires. However,
GemDroid does not model these IPs at this point. This
metric is provided only for the sake of completeness.

Core-Utilization: In addition to the above metrics,
we also measure core-utilization (percentage of busy-cycles),
which measures the total amount of time for which the core
is working. By lowering core-utilization without affecting
performance, one can make the system more energy efficient.

5. IMPACT OF MEMORY SUBSYSTEM IN

MOBILE PLATFORMS
As depicted in Figure 4, memory is a shared resource be-

tween the cores and IPs and any performance issues in its
path is more likely to manifest as a system bottleneck, as has
been the case for traditional computing systems. Design of
high performance memory systems including memory con-
trollers (MCs) has been an active area of research for the uni-
processor and CMP (chip multi-processor) domain [26, 43].
However, memory access patterns of our target mobile ap-
plications are different from scientific workloads like SPEC,
Parsec [4] or server workloads, as we will illustrate shortly.
To our knowledge, no other work has investigated the mem-
ory system design for such multiple IP SoC systems. This
section describes our analysis of these memory systems.

5.1 Memory Access Patterns
To show how SoC applications differ in their memory be-

havior, we plot in Figure 8 the memory access patterns of a
SPEC applications (h264.ref ) and a video recording appli-
cation running on our SoC platform plotted over time. The
Y-axis shows a sample address range, and only a portion of
the full execution has been shown for clarity. We see similar
trends for many other SPEC benchmarks. One can make
two important observations from these plots:

First, while SPEC applications have quite irregular mem-
ory address patterns over time, the video recording and the
browser applications use a specific set of data over and over
again, indicating good data locality. We observed similar
patterns for many other display-bound applications. We in-
vestigated the address regions and found that, this reuse
pattern was caused by two reasons: (i) for the display bound
applications, frames were written into the same physical ad-
dress region repeatedly almost every 1/60th of a second; and
(ii) the source devices (like cores/ GPUs/ video decoder)
write into the same address region, from where the sink de-
vices (display, audio output) read data.

Second, at some time instants, we see two regions of ad-
dress being used concurrently. This happens when the core
is accessing two different regions, or when a core and an IP
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Figure 8: Comparing the memory access patterns of SPEC ap-
plication (h264.ref) with video recorder mobile application from
our experimental suite.
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Figure 9: Variations in the bandwidth demand of applications over time.

are accessing the memory concurrently. Such a scenario in-
creases the bandwidth demand placed by the application on
the memory system. We observed that the number of con-
current accesses to memory can increase depending on how
many IPs are used by an application. Thus, the peak mem-
ory pressure could change significantly across applications,
making the memory system design complex. This is because,
unlike SPEC, PARSEC and many other applications, which
typically do not have hard deadlines, most of the mobile ap-
plications and hence IPs have real-time constraints. Thus,
provisioning only for the average memory bandwidth may
not be adequate to meet the real-time constraints.

Analyzing Memory Access Characteristics of IPs:
We analyzed the memory access characteristics of IPs re-
quests belonging to our applications, and noted some in-
teresting characteristics. While modem, audio, display and
camera IPs primarily sent and received fixed size packets for
an application, across applications their sizes varied. For ex-
ample, an application involving HD video capture or photo
capturing applications had different sizes of frames being
sent compared to a 720p video capturing. One interesting
feature that we observed was, when the Android Emulator
writes data into the frame buffer region for the display to
read, it does not write “framesize-amount” of data for ev-
ery frame. Instead, it only overwrites parts of the frame
that need to be changed. For applications like browsers, if
only parts of the screen are changed due to animation, then
data only for that part is overwritten in memory. For a
YouTube video running on a browser, we plotted the distri-
bution of frame sizes in Figure11a. Typically, the distribu-
tion shows that 3 sizes of frames were transmitted. When-
ever full sized frames were transferred, we observed 0.73 MB
of data per frame being written by the CPU. If most of the
frame, except the borders/system panel changed, then 0.6
MB data per frame was transmitted. Otherwise, negligible
amount was transferred (this includes writing and reading
from memory-mapped registers of the display IPs, or some
small part like clock display being changed on the screen).
In Figure 11b, we plotted the inter-arrival time of the dis-

play frames software-rendered by the CPU (the frames are
sorted in ascending order based on their inter-arrival times).
Ideally, CPU is expected to produce the frame exactly every
1/30th of a second (in this experiment, the required FPS
limit was set as 30 FPS). But, we can observe that the de-
lays vary. This variation is attributed to many reasons like
the complexity of the frame needed to be rendered, inter-
ference at shared resources at that instant, etc. One crucial
point to be noted is that, while most of the frames arrive
before the deadline time (1/30 = 3.33× 107ns), some arrive
very late (towards the right most side of the graph). Frames
that arrive later than this point forces the following frame
to be dropped. When we curve-fit this plot, we observe the
distribution follows an exponential distribution, with an R2

value of 0.943 for this application.
Similar characterizations are possible for other applica-

tions as well. These results are interesting because one can
use these inter-arrival time distributions along with frame
rates and packet size distributions to simulate a YouTube
workload on the GemDroid simulator.

5.2 Memory Demand of Applications
Figure 9 shows the memory bandwidth demand of two

applications over time. Only a part of the full timeline is
shown for clarity. Most of the other applications are similar
to at least one of these two applications as far as their band-
width demand is concerned. In this figure, we separately
plot the memory demand of each IP during the execution
of an application, and then show the total demand. For
example, in Figure 9b, we see that the YouTube videoplay-
back application uses CPU, display, audio device and the
GSM network for data, and their corresponding bandwidth
demand is shown in the top four sub-graphs. The last graph
of Figure 9b shows the total bandwidth demand placed on
the memory. We observe that, at some instants, the band-
width demand is much higher than the average. These peaks
are primarily observed when the data request bursts from
different IPs overlap with each other. In applications like
video recording, we notice that the peak demand requested
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Figure 10: Impact of a perfect memory on applications.

is much higher than the peak bandwidth (3.2 GBPS) pro-
vided by the memory system (LPDDR2-400). These are the
instants when a frame can possibly get dropped. Note that,
in the video recording application, all frames demand more
than 3.2 GBPS, but not all get dropped. This is because,
the required frame rate is 60 FPS, each frame gets 1/60th of
a second to be processed. If the frame currently being pro-
cessed is not served within that limit, the next frame that
arrives is dropped.

Investigating core-bound benchmarks like Linpack and An-
tutuCPU, we observed that the impact on memory is sub-
stantially lesser than display bound applications2. We also
noted that such applications have higher instruction through-
put than the rest, due to fewer memory stall cycles.

5.3 Impact of Memory on Applications
To understand how memory contributes towards applica-

tion’s stalls, we analyzed how much improvement a perfect
memory can provide. We define a perfect memory to have
0 cycles turn-around time for requests. We found that, for
core-bound applications (Figure 10a), the execution time de-
creases substantially for many workloads, and moderately
for some. For display bound applications on the other hand,
we noted that the system improved its frames-per-second
and lesser number of frames were dropped with the perfect
memory (see Figure 10b). This is primarily attributed to
two reasons – (1) the core that produces the data for the
frame, produces it earlier, thus, avoiding frame drops; and
(2) the IPs (producers/consumers) are able to write/read
the data much faster, not exceeding the deadline imposed.
Note that the display bound applications are limited to 60
FPS. Once the required 60 FPS is reached, applications are
throttled to remain at that rate. If the FPS drops, throttling
is stopped.

Consider the scenario, where the base case has 60 FPS.
Then, no performance improvements can be observed. Here,
we use the number of busy cycles in core and IP devices to
quantify the impact of perfect memory. The lower the num-
ber of busy cycles, the better would be the power savings.
Similarly, the improvements seen with applications reach-
ing 60 FPS are not the true maximum. For these, benefits
should be seen through the reduced number of busy cycles
as well.

2We noted that for some CPU bound benchmarks, there was
noticeable network activity during every run of the bench-
mark. They were found to be the addresses that were ren-
dered during the execution, or when the application’s com-
municated the results back to a server towards the end of
the execution.
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Figure 11: Characteristics of frames in YouTube application.

5.4 Summary of Observations:
Specifically, we observe the following primary differences

between the traffic from cores and the IPs:
1 - IPs have more or less regular request inter-arrival

times, with their requests coming in bursts. CPUs have
irregular arrival rates, and are typically not bursty.

2 - IPs requests have substantial memory latency tolerance
compared to CPU cores. Thus, they can be stalled for some-
time without any effect on performance or user-experience.

3 - Arrival rates of memory requests from CPU and IP are
very different. While CPUs requests are fewer in number,
IP requests come in bursts of tens or hundreds or even thou-
sands. Their inter-arrival time distributions can be used to
simulate any specific IP.

4 - IPs demand bandwidth. The higher the bandwidth,
the faster they read/write data; achieving two purposes: (1)
they move to low power states sooner, allowing for some
power savings, (2) it lets the next component (core or an-
other IP) that needs to feed on what was provided by this
IP to start its work sooner, therefore reducing frame drops,
and improving response time.

Based on the core and IP request properties described
above, we present in the next section a Heterogeneous Mem-
ory Controller (HMC) design that has been tailored for SoC
systems.

6. A CASE FOR A HETEROGENEOUS MEM-

ORY CONTROLLER
In this section, we provide a brief overview of the baseline

memory design, explain the proposed heterogeneous mem-
ory controller (HMC) design, and finally evaluate our pro-
posal.

6.1 Locality-Parallelism Tradeoff in Memory
Design

Baseline Memory System: Figure 12 (A) shows the
memory design of our baseline system. It consists of 2
memory controllers (MCs) controlling two distinct regions
of memory. As shown, the cores and IPs share this memory
subsystem. Traditionally, these MCs are the gateway to ac-
cess data in memory, which is logically organized as DRAM
banks. Each bank has cells (memory elements) laid out in
arrays of rows and columns. The data can be striped across
banks at various granularity, for example, at page-level or
at cache-line-level. In page-level, the distribution of data
across banks is at a granularity of a OS page, which is a
chunk of multiple consecutive cache lines. For example, if
page size is 4KB (used in our paper), the first 4KB of con-
secutive data is mapped to the first bank, and the next 4KB
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to the next bank, and so on. In our baseline system, we use
this page-level striping for both the memory controllers, as
shown in Figure 12 (A). In cache-line-level striping, the dis-
tribution of data across banks is at a much finer granularity
– at cache-line granularity. In this case, every other cache
line is mapped to a different bank.

Baseline HMC

Cores IPs IPsCores

MC0
(Page Striped)

(A) (B)

MC1
(Page Striped)

MC0
(Page Striped)

MC1
(Cache Striped)

Figure 12: Schematic of (A) Baseline memory design and (B)
Proposed HMC memory design.

Locality vs. Parallelism: When accessing a cache
line from memory, the row that contains the cache line is
brought to a buffer called row buffer, which is associated
with every DRAM bank. Once the contents are placed in
the row buffer, subsequent memory requests to the same
row are served from the row buffer (row-buffer hits), instead
of fetching them again from the memory array. This re-
duces access latency, improves performance, and saves the
energy-expensive job of reading the row from memory array.
Instead, if a different row from the one in the row buffer is
requested, the current row is closed, and the new row gets
placed in the buffer. This incurs high memory latency and
is a high energy consuming task. Therefore, it is optimal
to receive and serve requests from the row buffer. For this
very reason, the most popular form of data distribution in
CMPs is page-level striping, where up to 4KB of consecutive
data can be mapped to a bank, and if requests are sched-
uled timely, all the data can be fetched from the row-buffer,
thereby improving DRAM locality and energy efficiency. On
the other hand, page-level striping restricts parallelism, as
not many DRAM banks can be utilized in parallel. This is
because if the requests possessing good locality are scheduled
roughly at the same time, only a limited set of the banks will
be accessed and the other DRAM banks will be idle. This
limitation can be addressed by cache-line striping, where
the same 4KB of data is striped across banks, and hence
the same requests will access multiple banks. Such striping,
although increases parallelism, it reduces locality. It is ap-
parent that both techniques of data-distribution have pros
and cons.

Auxiliary Metrics: In this context, we define two aux-
iliary metrics, which will be used to understand this trade-
off. First, Bank Level Parallelism (BLP), which is defined
as the average number of memory banks that are busy when
there is at least one request being served at this memory
controller [27]. Improving BLP enables better utilization
of DRAM bandwidth. Second, Row-Buffer Locality (RBL),
which is defined as the average row-buffer hit rate across
all memory banks [27]. Improving RBL decreases average
latency for memory requests, and increases the memory ser-
vice rate.

6.2 Overview of the Proposed Design
As discussed in Section 5, the IPs have significantly higher

memory bandwidth requirements compared to cores. This is

shown in Figure 9a, where imaging IP demands more band-
width compared to CPUs (note that the y-axis scales are
different). This manifests into two primary problems: (1)
the IP requests arrive in bursts thereby causing large queu-
ing delays for CPU requests reducing the core performance,
and (2) the IP memory requests interfere with core requests,
thereby impacting the row-buffer locality of all the requests.
Due to these two issues, the DRAM bandwidth utilization
is severely affected leading to degradation of system perfor-
mance. To address this, we propose having separate memory
regions for mobile systems.

6.2.1 Memory Region Separation

In this design, we divide the address space into two re-
gions: first region – associated with a dedicated memory
controller (MC1) for CPU data which is accessed only by
the CPUs, and the second region – associated with MC2
for IP data, which can be accessed by both cores and IPs.
Note that, we cannot have completely dedicated memory
controllers for IP and CPU requests, because the data pro-
duced by IPs need to be used by cores (or vice versa).

The goal of this design is to offer dedicated memory con-
troller for core requests, as these requests are more latency
critical. On the other hand, requests for the IP region are
bandwidth intensive, as they arrive in bursts and access large
chunks of data. Now, with separate memory regions, the
bursts of requests coming to IP regions access consecutive
cache lines. Due to this, these requests have very good row
buffer locality. But, the downside of such an access pattern
is that the bank-level-parallelism is very low.

6.2.2 Heterogeneity in Data Striping

To address the above problem, we enhance the design of
memory with appropriate data striping. We adopt two dif-
ferent data striping techniques for MCs: MC0 uses page-
level striping, and MC1 uses cache-line striping as shown
in Figure 12(B). The motive of having two different strip-
ing techniques is to increase the BLP for IP memory re-
gion, while retaining the row-locality at CPU memory re-
gion. Note that, in general, cache-line striping reduces row-
buffer locality. However, in this scenario (especially for
IPs), typically the row-buffer locality is not affected, because
these regions receive requests to large chunks of contiguous
data. Consider the example where the system has cache-line
striped n memory banks, and the display IP is accessing a
large frame region. In such a system, consecutive cache lines
are mapped to different banks in a cyclic manner, such that
every nth cache line is mapped to the same bank. Because
the IPs typically access consecutive cache lines, the requests
that are mapped to the same bank are likely to hit in the
row buffer, leading to high row-buffer locality. Also, as the
IP requests are sent to different banks, they take advantage
of BLP. Note that in the proposed design, there are no extra
overheads in terms of data copies or data duplication. All
IP-associated data are written to DRAM through a separate
memory controller(MC1) by cores or other IPs. While MC0
can be accessed by the cores, MC1 can be accessed by the
cores and the IPs.

6.3 Evaluation of HMC Design
We compare our HMC design to an iso-resource baseline

system with 2 memory controllers which are page-striped. In
the baseline system, the memory controllers are not aware
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Figure 13: Performance improvements of HMC with respect to baseline system. Lower is better.

of the characteristics of IPs’ and cores’ requests. We do
not consider cache-line striped memory controllers as they
increase the memory latency for all core’s memory oper-
ations, thus reducing system performance and energy ef-
ficiency. In the proposed design, Heterogeneous Memory
Controller (HMC), we isolate the requests targeted to IP
and CPU memory regions.

Figure 13a shows the performance comparison of HMC
with the baseline system for representative CPU bound and
Onscreen applications. We report their respective evalua-
tion metrics (execution times for CPU bound applications,
and CPU-busy cycles and FDPS for Onscreen applications).
From Figure 13a, we observe that, on average, the execution
time of CPU-bound applications is reduced by 25% (up to
56% in cfbench). This improvement is primarily attributed
to two reasons. First is the reduced interference from IP
accesses on the CPU requests at MC0, because of memory
region separation (discussed in Section 6.2.1). Second is the
reduction in latency at MC1 because of increased RBL and
BLP as discussed in Section 6.2.2.

The variance in reduction in execution times are attributed
to the impact of IP accesses on the CPU accesses. If an ap-
plication has relatively more number of IP accesses, it is
likely to perform better with our HMC design. Note that
for core bound applications, which do not have any IP calls
(antutu-ram and antutu-cpu), will mostly not take advan-
tage of HMC’s optimizations. In fact, in some cases, they
might lose performance due to reduced memory channel par-
allelism for CPU requests. In our studies, we find that the
execution time of Antutu-CPU application increases by less
than 1%.

The graph in Figure 13b shows the CPU activity under
different memory system designs. In on-screen applications,
CPU has to process data before an IP can consume it or vice
versa. By employing our HMC design, the CPU processes
the data quicker leaving it idle for more cycles. This can be
seen in the second set of bars in the graph. This reduction in
busy cycles directly translates to power savings.3 Figure 13c
shows the metric Frames Dropped Per Second (FDPS) under
different memory system designs. HMC design makes the
memory subsystem faster for both CPU and IP memory
requests leading to fewer frame drops per second.

To understand the impact of our HMC design, we analyze
some auxiliary metrics below. First, we look at how the lo-
cality at the memory controllers is affected due to HMC in
Figure 14. Sub-graph (a) shows that the locality (row-buffer
hit rates) at MC0 which is receiving only CPU requests in
the HMC case did not change much, while (b) shows the
row-buffer hit rates increase to almost 100%. This is mainly

3In this work, we focus on performance and do not have a
comprehensive power model for the system components.

because, when the address regions are partitioned, only re-
quests to IP memory space arrive at MC1. These requests
typically access consecutive cache lines, contributing to high
number of row-buffer hits.
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Figure 14: Impact of HMC on locality. Baseline has both MCs
serving both CPU and IP requests without distinguishing between
them. Higher is better.

In HMC, though there is significant locality, because con-
secutive accesses go to the different banks due to cache-line
striping, the bank level parallelism is also observed to be
substantially higher than the base case. Particularly, this
can be seen in Figure 15 (b), where the BLP for base-case
averages around 1.25 banks only, whereas for HMC averages
around 5.8 banks across all applications. In this IP memory
region, as the requests that arrive typically go to consecutive
banks in cyclic fashion, BLP tends to remain so high. Thus,
Figures 14 and 15 together clearly show that our design did
not lose locality when striping cache lines across banks. It is
also clear from these graphs that with intelligent data map-
ping in memory, like in HMC, we can get the benefits of
both, locality and parallelism.
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Figure 15: Impact of HMC on Bandwidth. Baseline has both
MCs with default page-striped addresses. Higher is better.

We observe that locality and parallelism in this system
have significant impact on the latency of memory requests.
Figure 16 shows the average latency of requests arriving at
the memory controllers. We observe that, with HMC, in
MC0, average latency improves because the core’s requests
are isolated from IP’s requests. Thus, the latency critical
core requests are served much faster, leading to performance
improvements. In IP-region memory controller, the latencies
were not affected significantly even though the requests are
coming in bursts.

Finally, in Figure 17, we plot the cumulative distribution
function of latencies of memory requests that arrived at the
IP-region memory controller for YouTube and Browser ap-
plication. The x-axis in this plot is the memory latency in
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Figure 16: Impact of HMC on Latency. Baseline has both MCs
serving both CPU and IP requests without distinguishing between
them. Lower is better.

cycles. We can observe that, with HMC, 99 % of the re-
quests have latencies less than 300 cycles, while in baseline
system, only 82% (youtube) and 95% (browser) of the re-
quests have this latency. This clearly shows the benefits of
HMC in reducing the memory latencies.
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Figure 17: Impact of HMC showing how increase in bank-level
parallelism reduces latency of requests in IP-address region.

7. RELATED WORK
Simulation Infrastructure and Application Charac-
terization: A closely related work to ours by Gutierrez
et al. [19] analyse the micro-architectural characteristics of
smartphone applications without focusing on IP behavior.
Another recent work by Sunwoo et al. [40] proposes an in-
frastructure to simulate smartphone cores, by integrating
the architectural simulator GEM5 and OS, to study emerg-
ing smartphone workloads. Again this study is only core
centric and lacks IP analyses. In this paper, we develop an
infrastructure that can simulate multiple IPs as well as cores
with OS, and can be easily extended to include more IP mod-
els. Also, we characterize the memory accesses generated by
CPUs and IPs, and design a memory scheduling mechanism
based on this characterization. Several works have investi-
gated the power consumption of different applications [35],
and different IPs [6] in smartphones, and proposed simula-
tion infrastructure to simulate mobile networks [7,18]. These
works neither characterize the memory sub-system, nor look
at commonly used mobile applications.
IP Design and Optimizations: Ozer et al. [32] describe
the steps involved in the design and verification of ARM
IPs. Saleh et. al [37] discuss reusability, integrity, and
scalability of IPs used in SoCs. Along with IP design and
analysis, several works have proposed IP-specific optimiza-
tions [13, 20,25, 34,38, 39]. Our work does not consider spe-
cific IP design or optimizations, instead focuses on charac-
terizing the interaction of different IPs and cores, and intel-
ligently schedules their memory requests to improve over-
all system performance. A large body of work on power
in smartphones include propose a system-call-based power
model [36], power consumption of network devices and pro-
tocols in smartphones [3], a network-based power reduction

technique for smartphones [12], and the power consumption
of various IPs and applications in smartphones [22,41,44].
Memory Controller Design and QoS: Several works
have investigated memory scheduling techniques in the con-
text of smartphones. Lee and Change [28] describe the
essential issues in memory system design for SoCs. Lee
et al. [29] propose a memory scheduling mechanism that
provides latency and bandwidth guarantees for memory ac-
cesses. Akesson et al. [1] propose a memory scheduling tech-
nique that provides a guaranteed minimum bandwidth and
maximum latency bound to IPs. Lin et al. [30] employ a hi-
erarchical memory scheduler that improves system through-
put. Jeong et al. [23] provide QoS guarantees to frames by
balancing memory requests at the memory controller. In the
context of CMPs and uni-processor systems, several works
have proposed low-power memory designs [10, 11] that can
be applied in smartphones for better energy efficiency. In
this paper, we propose a MC design specifically tailored for
both CPUs and IPs.

8. CONCLUSIONS
In this paper, we present a comprehensive simulation frame-

work for exploring the SoC design space, targeted specifi-
cally for mobile systems. The proposed GemDroid platform
primarily consists of the Android emulator that enables col-
lecting core traces and IP calls for mobile applications and
the GEM5 core simulator that enables in-depth analysis of
the core and memory subsystems. In addition, we have in-
cluded several IP models for characterizing the execution
profile of IPs, invoked by different applications.

To demonstrate the capabilities of the infrastructure, in
this paper we focused on the memory system analysis of
SoCs since it is a known performance bottleneck for both
latency critical core executions and bandwidth critical IP
executions. Thus, we present a heterogeneous MC design,
where one MC is optimized for core requests and the other
MC is dedicated to enhance bank-level parallelism of IP re-
quests. The proposed modifications to the MC design results
in improving both core and IP performance.

The proposed GemDroid simulator is expected to fill a
void in the mobile system design space by facilitating a holis-
tic performance and power analyses of evolving SoC designs.
The novelty of the framework is that it is flexible where users
can add more IPs, different simulation and analytical mod-
els for IPs either to make detailed or faster evaluation, sim-
ulate multiple cores, on-chip interconnect design and emerg-
ing memory technologies for system-wide performance and
power optimization. We are currently looking into some of
these issues for making GemDroid a more powerful tool. We
propose to make the entire GemDroid framework available
in the public domain, together with modular capabilities to
allow the broader academic community to undertake numer-
ous studies.
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